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Supplementary Note 1: Data Description 
   

In this paper, we assembled large-scale datasets from a range of different sources: 1) the U.S. 

National Institutes of Health (NIH) grant application data; 2) Clarivate Analytics’ Web of Science 

data (WoS); 3) the National Library of Medicine’s PubMed database; and 4) Google Scholar (GS) 

profiles. Combining these datasets allows us to trace career trajectories of NIH principal 

investigators (PIs) through their grant applications, funding outcomes, scientific publications and 

publication impacts. 

 
NIH grant database and sample details 
   

Our main dataset contains all R01 grant applications ever submitted to the NIH between FY1985 

and FY2015; R01 is the primary funding mechanism NIH, which is the world’s largest funder for 

biomedical research. Our data consist of 778,219 competing grant applications in total, supporting 

more than 170,000 research personnel across more than 2,500 U.S. institutions. For each grant 

application, we obtained its evaluation score, scientific study section, a unique identifier for the PI, 

the PI’s name, and the funding outcome. Supplementary Figure 1 shows the number of competing 

R01 applications and the success rate over time; the success rate has declined over the past three 

decades, due to the increased number of applications with limited budgets to support them 

(Supplementary Figure 1b).  

	
Publication and citation datasets 
 

Our second dataset, i.e., the Web of Science, provides comprehensive publication and citation 

records of more than 46 million papers published from 1900 to 2015 by more than 20,000 different 

journals. For each paper, the WoS data contain the title, journal, subject, publication date, author 

names, affiliations, and a set of references.  

 

For every NIH grant, all papers published as a result of the grant are deposited in the PubMed 

database and uniquely identified with PubMed IDs. This fact enables two important possibilities. 

First, it allows us to link the NIH grant database with the WoS dataset using a precise mapping 

between PubMed IDs and paper identifiers in our WoS database purchased through an advanced 

agreement with Clarivate Analytics. This mapping not only offers us additional information about 
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each publication, it also allows us to trace citations to each paper within the WoS and how these 

citations compare with other papers published in the same year and field. Second, each PI is 

associated with his/her unique IDs in the NIH data, and the PubMed papers associated with all 

his/her grants offer a set of “ground-truth” papers for disambiguation purposes. As such this key 

feature of our data could also substantially improve the accuracy with which we identify authors 

in the publication databases, as we will discuss in detail later.  

 

NIH grant review process 
 

To make sure all readers are familiar with the process through which our study took place, here 

we briefly review the NIH grant review process1: In the first step, each PI submits his/her grant 

proposal directly to the Center for Scientific Review (CSR), and a referral officer will assign the 

application to an appropriate Integrated Review Group (IRG), Scientific Review Group (SRG) and 

Institute or Center (I/C). After assignment, each application receives an identification number. All 

applications will be assigned to a review group (known as a study section) that comprises scientific 

peers, where reviewers usually evaluate the proposal according to several metrics such as 

innovativeness, significance, investigator’s track record, et cetera. About 50% of all applications 

are rejected prior to the panel discussion step, and thus no score is assigned. For applications that 

reach the discussion panel, each study section member provides a priority score from 1.0 (best) to 

5.0 (worst) with increments of 0.1, and the score is averaged and multiplied by a factor of 100. 

These scores are then normalized within each study section to facilitate funding decisions.  

 

In this study, we focus on all new R01 competing grant applications from regular standing study 

sections between FY1990 and FY2005. We did not use data from FY1985 to FY1989 to eliminate 

possible boundary effects in defining junior PIs. Similarly, we focus on grants prior to FY2006 

because we need additional ten-year time window to trace career outcomes. To further make sure 

that near-miss and narrow-win individuals studied in our paper apply to categorically similar R01 

programs, we eliminated special-emphasis panels (special emphasis panels are review groups 

formed on an ad hoc basis to review applications requiring special expertise or when a conflict of 

interest situation occurs), as well as small study sections with less than 50 grant applications per 

year, to ensure statistical power when making inferences about proposals close to the payline. 
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Author name disambiguation 
	
Each PI in the NIH is uniquely identified by an NIH ID together with his or her full name, and all 

publications resulting from his/her NIH grants are correctly associated with the PI. This feature 

provides useful information that helps with author name disambiguation. For any paper in a 

scholarly database, a fundamental issue is to identify the individual(s) who wrote it and, conversely, 

to identify all of the works that belong to a given individual2-4. This seemingly simple task 

represents a major unsolved problem for information and computer sciences, mainly because of 

the lack of ground truth. While automatic name disambiguation in large-scale scholarly datasets 

remains an unsolved challenge, recent studies on individual careers have achieved initial success 

using various pertinent citation features2,5. In this paper, we build on the state-of-art algorithms 

but also extends them in meaningful ways by combining the NIH dataset with the WoS dataset. 

Indeed, the NIH publications associated with each PI represent new, ground-truth information that 

none of the existing disambiguation algorithms had access to. When working in unison with 

existing algorithms, such information allows us to further harvest additional publications by the 

PI, which could potentially offer a more accurate and comprehensive trace for individual career 

histories than simply using the state-of-art algorithms. Next we describe specific steps in our name 

disambiguation procedure.  

 

First, for each PI name we generated a pool of candidate publications, consisting of all possible 

publications by the PI from the WoS according to the following rules: a) Last names of these 

publications must be the same with the PI last name; b) Initials of the first names have to be the 

same with the first name of this PI. If full first names from the WoS are available, they must be 

identical to this PI’s first name; c) The same rule applies to middle names. One can think of the 

goal of this step as to increase the rate of recall at the expense of precision.  

 

Our second step involves merging papers from the pool generated above. Here we build on existing 

algorithms2,6,7 to decide the authorship of papers: Two papers are considered to be from the same 

author if one of the following conditions is true: a) The two papers cite each other; b) The two 

papers share at least one common reference.  
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After step two, we compare papers from each group with NIH supported publications by the 

considered PI, following these two rules: a) If the PI has at least one NIH-related publications, all 

groups that contain these publications are associated with this PI; b) If there is no NIH-related 

publication for a particular PI, we compared the string similarity between PI’s affiliation on the 

NIH grant applications and on the publications, after removing common words (e.g., stop words, 

“university”, “institute”, “hospital”, etc.), and consider the paper belongs to the PI for the cases 

with high cosine similarity (in our case, we set the threshold at 0.65), as well as its group. 

 

Although name disambiguation methods are becoming increasingly accurate, the main problem 

with them is that we are often not sure how perfect or imperfect they are. To gauge the accuracy 

of our algorithm, we compare career histories obtained using our method with Google Scholar (GS) 

individual profiles. GS allows individual scientists to create, maintain, and update their own profile 

of publication records, assisted by the name disambiguation algorithm developed by Google. 

While the GS profiles themselves are not gold standards, here we quantify the extent of agreement 

between our method and GS to make sure that our name disambiguation method does not deviate 

significantly from an independent test. Comparing with GS profiles, we find that the average 

precision and recall of our algorithm is 0.85, and 0.71, respectively. An alternative way that we 

could make use of the GS profiles is to incorporate them directly into our disambiguation 

procedure. The reason we did not do that is to avoid potential bias in our results, because not 

everyone in our sample has a GS profile. Indeed, we find that only a fraction of NIH PIs has 

reliable GS profiles, which are biased towards active PIs. Since the goal of our study involves 

testing differences between two populations, the potential bias introduced by the GS profiles could 

be an issue as more narrow wins remained active in our setting.   

 

To further evaluate the accuracy of our algorithm to disambiguate author names, we randomly 

select 1,000 author-publication pairs from PIs around the payline. Specifically, we randomly select 

50 PIs, and for each PI 20 publications. By removing meeting abstracts in the Web of Science data, 

we obtained 576 positive cases in which papers were published by the PI, and 225 negative cases 

in which papers were written by different persons with similar name as the PI. We then performed 

manually search for PIs’ websites, Google Scholar profiles if any, affiliations, coauthors etc. Out 

of these 801 pairs, we find the false positive rate (i.e. fraction of times the algorithm indicates the 
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paper belonging to the PI, while they do not) to be 8.9% and a false negative rate (i.e. fraction of 

times that the algorithm considers the paper belonging to a different person, while they do not) of 

4.7%. These low error rates support the validity of the disambiguation algorithm we used in the 

main text. 

 

The analyses in the preceding paragraph show a high degree of agreement between our method 

and an independent test set; the method also show low error rate with respect to manually searches. 

As with any name disambiguation methods, it is necessarily imperfect. To ensure the errors 

contained in the method do not affect the conclusions of our study, and to examine further the 

robustness of our results, we repeated our analyses by varying different assumptions made in the 

disambiguation procedure (Supplementary Figure 2). For each variation, we redo the 

disambiguation process and repeat our analyses to see if the conclusions change. For example, in 

Method A, we considered only self-citations between two papers to determine if they are from the 

same author; In Method B, we used not only self-citations and co-references, but also take into 

account the names of coauthors. For example, if two papers associated to the same name share at 

least one common coauthor name, or one common reference, or cite each other, they are considered 

to be from the same PI; In Method C, we implemented the name disambiguation method proposed 

by Caron and van Eck8,9. The method takes other information into consideration including 

common citations, common addresses, email, journal and subject categories, etc. Two papers are 

clustered if the score exceeds a certain threshold. These different methods result in different set of 

papers for each author. Yet we find, amid all different variations, our conclusions remain the same 

(Supplementary Figure 2). This supports the hypothesis that while name disambiguation methods 

may be error-prone, the errors do not affect the conclusion if they are distributed unbiased across 

the two populations. Indeed, we find that, under different disambiguation methods, near misses 

consistently have a higher chance to publish hit papers (Supplementary Figure 2a, d, and g). Near 

misses also outperform narrow wins in terms of the average number of citations per paper 

(Supplementary Figure 2b, e, and h). In terms of the number of publications, as in the main text 

there is again a lack of significant difference between the two groups (Supplementary Figure 2c, 

f, and i, Figure 2a in the main text). Finally, PIs with common Chinese or Korean names are known 

to be difficult to disambiguate, accounting for the majority of the error rate2,3,10. As another 
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robustness check, we repeated our analyses by removing PIs with common Chinese or Korean last 

names (Supplementary Figure 3), finding the results are similar to those reported in the main text.  

 

Although name disambiguation methods are becoming increasingly accurate, the main problem is 

that we often don’t know how perfect or imperfect they are. Yet, while the name disambiguation 

methods may be imperfect, it’s important to note that there are also reasons to believe that potential 

errors in name disambiguation methods do not affect our conclusions, as such errors are likely to 

differ smoothly with the score hence are controlled for by our RD analyses. In other words, the 

errors don’t favor any particular group above or below the payline. Nevertheless, our goal here is 

to try several state-of-art name disambiguation methods to further ensure the robustness of our 

results (Supplementary Figure 2 and Supplementary Figure 3). 

 

Normalized Priority Score 
 
In this study, we take advantage of the fact that NIH funding decisions are based on evaluation 

scores, resulting in a highly non-linear relationship with funding success. The funding cutoff at the 

NIH varies across different study sections, institutes, year and grant mechanisms. To infer the 

cutoff, here we build on prior work11 to obtain the priority score for each application. In addition, 

our data allowed us to zoom into each study section instead of focusing on the NIH institute level. 

This helps us account for the heterogeneity of cutoff across different years and study sections, by 

comparing, for each fiscal year, the grant applications submitted to the same study section. We 

investigated the success probability as a function of priority score and define the cutoff score as 

the third worst score of funded applications in each study section so that there are only two out-

of-order funding events that occurred beyond the cutoff. This choice helps balance the number of 

observations in both narrow-win and near-miss group. To check if it indeed leads to a cutoff effect, 

we calculate the normalized score by subtracting the cutoff score from each proposal score, finding 

a clear drop in funding success probability at the cutoff point (Supplementary Figure 4 and Figure 

1a); the same results hold for major NIH institutes (Supplementary Figure 4b). We also repeated 

our analyses by defining the cutoff as the second worst score of funded applications in each study 

section, finding consistent conclusions (Supplementary Figure 5). 
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Supplementary Note 2: Related Work 
 
There has been extant theoretical and empirical evidence from a diverse set of disciplines that can 

help inform our research question of whether an early-career setback may lead to future career 

impact. Here we aim to provide a brief overview of the different lines of research.  

 

An especially prominent and relevant line of enquiry is the Matthew effect, which was formalized 

by Robert K. Merton in 196812, named after a verse in the bible’s Gospel of Matthew. Merton 

described a “rich get richer” phenomenon, where early-career success brings reputation and 

recognition that can translate into tangible assets that in turn help bring future successes. The idea 

of the Matthew effect has deep roots, and goes under many different titles, including cumulative 

advantage13 used by de Solla Price to explain citations of papers, and preferential attachment14 in 

the network science context to explain the origin of scale-free networks. The idea also forms the 

core of various fundamental, mathematical models, including Pólya process, corresponding to the 

well-known urn model by György Pólya in 1923, or the Yule process15. It also underlies the key 

assumption used by Zipf to explain the fat tailed distribution of wealth in the society16. 

 

The Matthew effect predicts that the answer to the question of whether early setbacks lead to 

longer-term success should be no. This thesis is further supported by widespread empirical 

evidence in science as well as in other related domains. For example, for publications, the Matthew 

effect captures the well-documented fact that highly-cited papers are more visible and are more 

likely to be cited again in the future13,17-21. Studies of individual scientific careers documented the 

reputation effect that an early-career recognition brings to increase future chances of success22-26. 

Beyond science, the Matthew effect has also been experimentally validated in various domains, 

from social influence27 to different reward systems28,29. It also speaks to a classical line of research 

that success may relate to the sacred spark30,31 or influence individual motivation, where positive 

feedback bolsters self-confidence whereas failure lowers self-esteem. 

 

The strongest endorsement to the Matthew effect comes from the fact that it has been investigated 

specifically in the setting of our study over the past decade11,32,33. For example, Jacob and Lefgren 

first documented the Matthew effect in the science funding system11. Using data from the NIH, 
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they found that a small but significant impact of initial NIH funding on obtaining future funding 

from the NIH, with little impact on future scientific productivity (i.e., number of publications). 

Ganguli investigated the impact of grants using data from a Soviet grant program shortly after the 

end of the USSR32. Her analysis directly speaks to the scenario when funding levels are low, and 

found that obtaining grants significantly reduces the attrition rate while increases future 

productivity. The most recent evidence of the Matthew effect in science funding was offered in 

the context of early-career academic funding system in the Netherlands33. More specifically, Bol 

et al. demonstrated that early career funding is critical for late-career funding, as winners just above 

the funding threshold accumulated more than twice as much as funding in the following eight years. 

Although in the Dutch setting, prior success of getting funded is a merit review criterion in later 

competitions which by itself may increase future chance for funding, these results are consistent 

with another recent study on the effect of postdoctoral fellowships34. where researchers showed 

that securing a specific postdoctoral fellowship from the NIH increases subsequent chances of 

getting another NIH grant. Together, the consistent results across all these studies offer clear, 

convincing endorsement that establishes the Matthew effect as the leading hypothesis for the 

research question raised in our paper. These studies are what make our findings surprising, thus 

highlighting the main novelty of our paper.  

 

While the Matthew effect predicts that success breeds success, there are reasons to believe that the 

opposite may be true. The primary mechanism for this second school of thought is the screening 

effect, which builds on the observation that later competitions are held only among those who 

managed to stay in. Hence if early career setbacks increase attrition, it may act as a screening 

mechanism, leading to a more selected set of individuals who remain35,36, with fixed, advantageous 

characteristics such as commitment, grit, high self-confidence, etc. As such, past failure may 

become a marker for future success for those who managed to stay in. This screening mechanism 

may produce empirically similar observations as the learning-from-failure literature, suggesting 

that failure may teach valuable lessons that is hard to learn otherwise37-39. In a separate line within 

the motivation literature, it has been shown that setbacks may also motivate people by signaling 

that more effort is needed, whereas success may associate with reduced future effort due to utility 

maximization40 or offer a sense of partial goal attainment, signaling that less effort is needed to 

reach similar targets40-42. 
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Finally, it is important to note that, while these different schools of thought make opposite 

predictions, they are not exclusive to each other. Rather they may both operate at the same time. 

Therefore, the net effect, which is what we can observe from data, remains unclear; this is the main 

purpose of our study. 

 	

Supplementary Note 3: Robustness Checks and Additional Results 
 

In this section, we reported further robustness checks and additional results by constructing 

different experimental settings and parameters. 

 
Hits per capita 
 
In this section, we compared near misses with narrow wins in terms of hits per capita, measuring 

the average number of hit papers per person. We find a similar size of performance increases for 

near misses (near misses outperformed narrow wins by a factor of 19.2%, i.e., around 2 hit papers 

per capita over the next ten-year time window). The lesser significance level is due to a reduced 

sample size (Supplementary Figure 8, t-test, p-value = 0.107). Moreover, the RD analyses yields 

similar magnitude of results (a single near miss leads to 3.6 more hit papers per capita over the 

next ten-year time window, p-value 0.098, Supplementary Figure 7c).  

 
 
Alternative definitions of junior PIs 
 
In the main text, we defined junior PIs as those within the first three years of their R01 NIH 

applications. To ensure our results are not affected by this definition, here we tried two variations 

of alternative variations and repeat all our analyses. First, we modified our definition of junior PIs 

by only focusing on first-time applicants, i.e., those who submitted their first R01 application at 

the time of treatment. This results in a corpus of 656 narrows wins and 703 near misses. We 

conducted the same analyses, finding the results are robust across various measures of longer-term 

success (Supplementary Figure 9).   
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We also varied the junior PI definition by focusing on those without any existing NIH grants at 

the moment of treatment within our main sample. We recovered the same findings for this group 

of PIs. For those who managed to stay in, their subsequent publications again garnered higher 

impacts in terms of probability of producing a hit paper (Supplementary Figure 10a), average 

citations (Supplementary Figure 10b), or hit papers per capita (Supplementary Figure 10c). To test 

the screening effect, we repeated our conservative removal procedure, finding again that near 

misses significantly outperformed narrow wins (Supplementary Figure 10d-f), with a stronger 

effect than what we observed in Figure 3 of the main text (shaded symbols in Supplementary 

Figure 10d-f). Together these results indicate that our results are robust against different definitions 

of junior PIs.  

 

Varying thresholds for the definitions of hit papers 
   

To test if our results only hold for publications that fall within the top 5% of citations, we varied 

the definition of hit papers using top 1%, top 10% and top 15% of citations received in the same 

field (as indicated by the Web of Science subject categories) and year (Supplementary Figure 11). 

Consistent with our main results, both narrow wins and near misses have significantly higher hit 

paper probabilities relative to the base rate (i.e., 5%), independent of our definitions. In all three 

different definitions, near misses outperformed narrow wins, demonstrating that the hit rate per 

paper by the near misses are significantly higher than that of narrow wins. In terms of hits per 

capita, near misses published significantly more top 1% highly cited papers than narrow wins. 

Using our conservative removal method, we arrived at the same conclusion that the screening 

mechanism alone seems insufficient to explain the observed difference.  

 

Normalized citations over time and disciplines 
 
Publications in some disciplines may be cited more frequently than in other disciplines43. To 

normalize the raw citations with respect to different disciplines, we follow the canonical method43 

and normalize the citations of each article by the average citations of all articles belonging to the 

same field and year. Specifically, let the raw citation of our focus article be 𝑐, and the mean 

citations for all articles in the same field (as indicated by the Web of Science subject categories) 

and year be 𝑐". Then the normalized citations can be calculated as 𝑐# = 𝑐/𝑐". Moreover, we define 
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field according to the citation network of each article. By dividing the average citation rates by an 

expected citation rate from papers in the same field as indicated by the co-citation network, we 

calculated the relative citation ratio (RCR) for each article44,45. 

 

To show our results are robust with different citation measurements, we compare the average 𝑐# 

and RCR of articles published by narrow wins and near misses (Supplementary Figure 12). We 

find that near misses again outperformed narrow wins in terms of the normalized citations and the 

RCR. Both groups have substantially higher citations compared with the average citations of all 

articles in the same field and same year. In the first five years after treatment, near misses attracted 

15% more citations compared with narrow wins, and this difference persisted for the next five 

years. Consistent with our main finding, the screening effect seems insufficient to account for the 

entire difference (Supplementary Figure 12b, d).  

  
Robustness to alternative fiscal years 
 
To rule out the possibility that temporal effects drive the differences between narrow wins and 

near misses, in this section we focus on two sub-periods to see if our results hold in both time 

windows. We focus on two different time spans, from 1990 to 1995 and from 1995 to 2000. We 

find the results are robust with respect to different time periods (Supplementary Figure 14): in 

terms of hit rate per paper and average citations, near misses significantly outperformed narrow 

wins; in terms of hits per capita, we obtain the same direction with lesser significance level. In 

terms of the number of publications, there is no significant difference.  

 

Additional funding by near misses 
 
While NIH is the world’s largest public funder for biomedical research, there may still exist the 

possibility that near-miss PIs found funding elsewhere. In this section, we extensively searched 

for other funding sources for near misses. Our procedure is as follow:  

 
First, we searched for the names and affiliation information for all PIs through google to see 

whether there is any homepage that shows up in the first page of the search. Among all the searches, 

we find 66% returned official homepages (i.e., university faculty pages that contain mostly 
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biographic information only). However, we find that only 2.8% searches resulted in personal CVs, 

showing a very limited coverage via direct searches.  

 

Given this limited coverage, we further drilled down on 200 PIs for detailed screening, and 

investigated each of them manually. Specifically, we randomly selected 100 scientists from the 

narrow-win group, 100 from the near-miss group, and manually searched for their profiles 

(including lab websites, personal websites, personal CVs etc.). After an extensive search process, 

our efforts yielded 13 (of 100) observations of CVs or personal website listing prior funding 

information for the near misses, and 10 (of 100) for the narrow wins; such sample size indicates 

that it is unlikely to yield meaningful statistics to compare the two groups. Although collecting 

CVs or personal websites didn’t quite work out, to overcome this roadblock, we further tried three 

new approaches. We next describe these approaches in detail. 

 

Approach A: acquired a novel data capturing individual funding history 

 

Our first attempt is to search for large-scale datasets that can capture individual grant records, 

which led us to discover a new data source that seems ideal for our purpose: The Dimensions data, 

a major new data product from the Digital Science. It specializes in collecting funding histories 

for each individual scientist by assembling and integrating all publicly available funding records 

from all agencies around the world. And it contains more than 4.8 million funding records funded 

by 340 funding agencies from 40 countries and represents to our knowledge the most authoritative 

data source for this purpose.  

 

For each PI in our sample, we manually searched for scientists with the same name in the same 

period, and retrieved his/her grant history recorded in the data using the online interface on 

Dimensions. First, the results show that narrow wins got significantly more NIH funding within 5 

years after treatment (t-test, p-value = 0.04), but not for year 6 to year 10 (t-test, p-value = 0.54). 

The results are in consistent with the figures we reported in the manuscript (Figure 2d), suggesting 

the validity of the data. Also, narrow wins also obtained more NSF funding in the next five-year 

window (t-test, p-value = 0.02, Supplementary Figure 15), but not for year 6 to year 10 (t-test, p-

value = 0.73). The results so far indicate that it is the narrow-win group who got more funding 
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within 5 years after treatment, suggesting the Matthew effect in science. We then measured the 

funding amount received by each PI from agencies other than NIH or NSF in the ten-year window 

following the treatment. We find the median funding amount per person for near misses between 

year 1 to year 5 is $370,000, and $610,000 for narrow wins, showing marginal significant 

difference between the two group with narrow wins having slightly more funding on average (t-

test, p-value = 0.07). We then measured the funding amount for the two groups between year 6 to 

year 10, obtaining $670,000 and $600,000 per person for near misses and narrow wins, 

respectively (t-test, p-value = 0.34). We also find narrow wins obtained slightly more funding 

when comparing the two groups between year 1 to year 10 (t-test, p-value = 0.08). Together these 

results demonstrate that in the ten-year period, near misses did not acquire more funding from 

agencies other than NIH or NSF, compared with narrow wins.   

 

While the approach above offers large-scale, quantitative evidence for this question, we further 

performed two additional approaches that offer further support for this conclusion:  

 

Approach B: collecting funding acknowledgement from PubMed data  

 

We also looked into the PubMed acknowledgement data, which contains research grants supported 

by any agency of the United States Public Health Service from 1981 (e.g., NIH, CDC, FDA, etc.). 

After 2005, the dataset also includes grant information for many other US or non-US funding 

agencies and organizations. Though we do not have funding amount in this dataset, we find that 

there is a lack of difference between near misses and narrow wins in the number of agencies other 

than the NIH or NSF. Specifically, within 5 years after treatment there were on average 0.80 

funding agencies other than the NIH or NSF per person for narrow wins; for near misses, this 

number is 0.81 (t-test, p-value = 0.92). Between year 6 to year 10, there were on average 2.03 other 

funding agencies per person for narrow wins; for near misses, this number is 1.50 (t-test, p-value 

= 0.40) 

 

Approach C: manually checking acknowledge statements included in publications 
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To further make sure our results are not affected by the PubMed coverage, we manually checked 

the acknowledgement statement of 100 random selected papers within 5 years after the treatment 

(50 for each group). We downloaded the PDFs, and read through them one by one. We arrived at 

the same conclusions (0.47 other grants per paper for narrow wins, 0.35 other grants per paper for 

near misses, t-test, p-value = 0.45).  

 

In conclusion, our analyses provide empirical evidence that near misses were unlikely to receive 

more funding from agencies other than NIH or NSF.  

 

Publication lags 
 
In this section, we conduct additional analyses to check whether the results reported in the main 

text are affected by publication lags where near misses had many papers unpublished at the time 

of treatment but under the peer review process. Given that the median time of a manuscript from 

submission to acceptance in a journal is around half a year46, we took papers published within one 

year after treatment in case they went for different journals. We compared the hit probability for 

near misses and narrow wins for year 0 and year 1, finding there is a lack of difference in the hit 

rate between near misses and narrow wins (14.9% for near misses versus 15.3% for narrow wins, 

χ'-test, p-value = 0.50). This result is consistent with our RD design, indicating that the two groups 

should be similar across various characteristics ex ante, including the characteristics of works in 

the pipeline. It also appears to reject the hypothesis that the observed difference between the two 

groups is simply due to hit papers moving through the pipeline. 

 

Building on this analysis, we next investigate where hit papers occurred within the subsequent 10-

year period. We divided the 10-year window into two non-overlapping periods; specifically, from 

1 to 3 years and from 4 to 10 years. If the pipeline hypothesis is correct, then hit papers by the near 

misses should be more concentrated in the initial period. However, when we break our data into 

these two periods, we find that hit papers by near misses were not concentrated in the initial period 

following the treatment (Supplementary Figure 16). Rather, the effect tends to be much more 

pronounced from year 4 to 10.  
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Together these results show that the performance advantage by the near misses did not occur 

overnight, suggesting that publication lags are unlikely to explain why near misses outperformed 

narrow wins.  

 

Different field definition 
 
In this section, we collected Medical Subject Headings (MeSH) using the PubMed dataset, which 

is a hierarchically-organized terminology for indexing and cataloging biomedical information. The 

goal here is to use the MeSH terms to define fields and then repeat our analyses to see if our results 

still hold. More specifically, for each paper in the PubMed database, there are multiple MeSH 

terms to describe the paper’s scope. As a result, for each publication, we retrieved all articles 

published in the same year with at least one identical MeSH term47. We defined hit papers as being 

in the top 5% of citations received among all these retrieved publications. This method defines 

fields on the paper level instead of journal (set) level, which differs substantially from the Web of 

Science subject categories used in the main text. Performing this analysis, we arrived at the same 

conclusions, finding that our results are robust to this alternative field definition (Supplementary 

Figure 18). 

 

Robustness for ex post funding status 
 
In this section, we tested if the results are similar after controlling for ex post funding status. Due 

to the strong selection bias, we proceeded descriptively by comparing near misses (N = 360) with 

narrow wins (N = 292) conditional on securing a grant within 5 years after the treatment. We find 

that ex post, these near misses again outperformed these narrow wins, showing a strong support 

for the robustness of our results against this variation (Supplementary Figure 19).  

 
 
Matching strategy and additional results in the RD regression 
 

In this section, we tested whether the results are robust to matching strategy and some additional 

controls. First, to ensure publication time and PI past grant score do not affect our conclusions, we 

first controlled for publication year by adding publication year fixed effects. Publication year fixed 

effect allows us to estimate the effect of near miss on career impact only sampling articles 
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published within the same year. We uncovered the same results, and find our conclusions to be 

robust (Supplementary Figure 31 a, b, e, and f). Second, we also controlled for fixed effects 

categorizing PIs’ prior grant experience. Specifically, we grouped all PIs into three different 

groups: PIs without prior grant applications, PIs whose most recent applications were discussed 

on the review panel (have scores), and PIs whose most recent applications were not discussed on 

the panel (no score, indicating that the application didn’t pass the initial screening). By adding PI’s 

past grant history fixed effects that only compare PIs within the same group, we find our results 

again to be robust (Supplementary Figure 31 c, d, g, and h). Together these results show that the 

performance advantage by the near misses cannot be simply explained by publication time and 

differences in PI’s prior grant applications. 

 

We further control for PI demographic features including the reputation of the scientific institution 

to which an applicant belongs (as measured by the number of successful NIH R01 awards from 

1990 to 2005), gender and ethnicity, which may be sources for potential peer review bias48,49. We 

used a start-of-art ethnicity detector based on the first and last name50, and apply it to the PIs in 

our sample. We find our results robust (Supplementary Figure 17). Specifically, we find that a 

single near miss increased the probability to publish a hit paper by 6.4% (p-value = 0.02), citations 

by 8.04 (p-value < 0.01), hit papers by 4.30 (p-value = 0.05) in the subsequent 10-year window 

conditional on active in the NIH system. The results hold for the conservative removal as well.  

 

Next, we calculate the effect of early-career setback on paper applied values using the RD 

estimation. The dependent variable here are: 1) whether a paper is a clinical trial publication as 

indicated in the PubMed database (direct contribution to clinical translation); 2) whether a paper 

has been cited by clinical trial publications (indirect contribution to clinical translation); and 3) 

whether a paper has the potential to be translational research. Specifically, the Approximate 

Potential to Translate (APT) score was used to identify early signatures of bench-to-bedside 

translation51, 52. The score is estimated using a simple machine learning method combing features 

such as MeSH terms, disease, therapies, chemical/drug, and citation rates. A paper is considered 

as translational research if the score is above 0.5. Due to the lack of precision associated with the 

IV estimation (Wald test of exogeneity, p-value > 0.1, suggesting no evidence of correcting for 

endogeneity), we focus on OLS regression here. We find that an early-career near miss increases 
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the probability to publish a translational research by 4.7% (p-value = 0.05), to publish a clinical 

trial article by 0.9% (p-value = 0.12), to publish a paper that has been cited by clinical trial 

publications by 2.8% (p-value = 0.17).  

 

Finally, we used the state-of-art matching strategy, i.e., Coarsened Exact Matching (CEM). The 

matching strategy future ensure the similarity between narrow wins and near misses ex ante (see 

Method section in the main text). We first show that the difference between matched near misses 

and narrow wins are indeed similar in terms of all observable dimensions (Supplementary Figure 

20), with all measurements being statistical indistinguishable (p-value > 0.1). We then repeated all 

our analyses, finding within the matched samples, near misses again outperformed narrow wins in 

the subsequent 10 years after treatment, and the difference cannot be fully explained by the 

screening effect. We find the results are robust using CEM matching (Supplementary Figure 21).  

 
 
On the screening mechanism 
	
In this section, we conduct further analyses to test the underlying assumption of the screening 

mechanism. The screening mechanism hypothesizes that near misses who remained active in the 

next 10 years after setbacks are “better” ex ante than near misses who have been screened out. To 

test this hypothesis, we compared several pretreatment features between active and inactive near 

misses, finding near misses who have left the system are indeed weaker than those who manage to 

stay in (Supplementary Figure 29b). However, we conducted the same analysis for narrow wins, 

obtaining the same results (Supplementary Figure 29c), suggesting screening effect may occur, 

but if so, it runs in the same direction for both narrow wins and near misses. Indeed, we compared 

pre-treatment characteristics of near misses and narrow wins who remained active for the next ten 

years, finding a lack of difference between these two groups in any observable dimension ex ante 

(Supplementary Figure 29a). We also obtained the same results using 2SLS regression analysis 

with dependent variable being the probability to publish hit papers and average citations per paper 

ex ante (for both cases, p-value > 0.25). Together these results suggest that the screening effect 

might be modest, if exists at all.  
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Nevertheless, we further conducted the conservative estimation by removing “less able” narrow 

wins to create artificial upward adjustment for performance of those who remained. As shown in 

the main text, we find upon removal, the performance gap remained. In addition to the removal 

procedure outlined in the main text, we also tested other, more conservative methods by redefining 

the “less able” PIs based on the LHS against which we compare the two groups. That is, when 

comparing hit rate per paper, “less able” PIs are those publish the fewest hit papers with the most 

papers; when comparing the number of hit papers and the number of publications, “less able” PIs 

are those who publish the least hit papers or publications, respectively. Amid all these variations, 

we find the main result holds the same (Supplementary Figure 30). 

 

Variance and outliers 
	
Previous sections show that near misses show an average increase in citations, here we examine 

other measures to inform further the shift in distribution.  First, near misses have lower chance to 

publish low quality research whose citation is below the average of all publications from the same 

field and same time (Supplementary Figure 23a, 𝜒'-test,  p-value < 0.001).  Second, we examine 

the coefficient of variation for citations of papers published by narrow wins and near misses in the 

next 10 years. The coefficient of variation (CV) is defined as 𝑐) =
*
+

, where 𝜎 is the standard 

deviation of the citation, and	𝜇 is the average citations. We see that near-miss applicants have a 

slightly higher coefficient of variation, but the difference is not significant (Modified signed-

likelihood ratio test (SLRT) for equality of CVs p-value > 0.1, Supplementary Figure 23b). Finally, 

we further compared the median citations in order to eliminate the effect of outliers. Within the 

next ten years, the median citations of the near misses are substantially higher than that of narrow 

wins, and the difference between the two groups is statistically significant (two sample Mood’s 

median test p-value < .001). This is also true for the case of the conservative removal procedure 

(two sample Mood’s median test p-value = 0.017).  

	
Different definitions of active PIs 
 
In the main text, active PIs are measured through individual grant activities. Specifically, we trace 

all NIH grant activities for each PI, and define active PIs as those who applied for and/or received 

NIH grants at some point in the future, i.e. after the measurement time period. Correspondingly, 
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inactive PIs are those who neither applied for NIH grants nor had one beyond the measurement 

time period, identifying those who disappeared from the NIH system. Formally, let us denote the 

treatment time by 𝑡, and our measurement period by 𝑇1 (𝑇1 ≤ 10	years). A PI is considered as an 

active scientist in the NIH system she/he either applies for an NIH grant or receives one after 𝑡 +

𝑇1; she/he is defined as inactive otherwise. Note that this definition is a cumulative measurement. 

That is, once an NIH PI became inactive, he or she was never active again within the observation 

window covered by our data. 

 

Finally, as an alternative robustness check, we modified the definition of active PIs by focusing 

on those who published at least one paper during a certain time window, i.e., PIs with at least one 

publication between 𝑡  and 𝑡 + 𝑇1 . We find the results are robust in terms of this alternative 

definition (Supplementary Figure 25). The near misses again outperformed the narrow wins in 

terms of hit rate per paper and average number of citations; the effect cannot alone be explained 

by the screening effect as the difference of these two groups is still significant after conducting the 

conservative removal.  

 

Was it because narrow wins became worse?  
 

In the main paper we documented a performance difference between the near-miss and narrow-

win groups. But could it be simply because narrow wins became worse after the treatment? To test 

this hypothesis, we investigated another group of clear winners. We selected success applicants 

whose scores were further removed from the funding threshold (normalized priority score range 

from -20 to -10). We find that prior to treatment, across many metrics, there is a clear difference 

between the near misses and clear winners. For example, in the prior three years before treatment, 

clear-win applicants typically have a 1% higher hit rate per paper compared with near-miss 

applicants; the number of hit papers per person is 2.3 compared with 1.7 for near misses; the 

average citations for the clear winners is 13% higher than for near misses; and clear winners show 

more research experiences than near misses. This advantage is expected given our design, showing 

that the clear winners clearly outperformed the near misses prior to treatment. After the treatment, 

however, we find that near misses outperformed clear winners in terms of hit rate per paper if we 

only focus on active PIs. With the conservative removal, we find the two groups have very similar 
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performance 10 years after treatment in terms of different metrics (hit rate per paper, number of 

hit papers per capita, number of publications and average normalized citations in the 10 years after 

treatment, Supplementary Figure 24), indicating that near misses are now performing at a 

comparable level as the group that were demonstrably better than them prior to treatment. Given 

the fact that near misses are comparable with clear winners ex post, who showed significant 

advantages ex ante, the observed gap is unlikely solely due to the fact that narrow wins become 

weaker.  

 

On this related point, we take a step further to check whether the results can also be accounted by 

the fact that narrow wins committed to their initial proposed “sub-optimal” ideas, while setbacks 

enabled near misses to further develop their ideas. Here we build on this idea to further interrogate 

our data. We have considered what kinds of analyses may help test this hypothesis and considered 

two predictions that may follow in line with this hypothesis:  

• First, if narrow wins were initially committed to the “sub-optimal” ideas, it may suggest 

that their work in the more distant future would be significantly better than the research 

performed under this grant. We can therefore test this prediction by comparing their initial 

publications in the years after the grant with their later publications.  

• Second, since the initial quality of these two groups are not different under the assumption 

of the RD (and reinforced by the tests on observables), after the grant that initially “locked 

in” a narrow win expires, later works by narrow wins may be more similar to those by near 

misses. This suggests that under the hypothesis we may observe a convergence of career 

impact between these two groups beyond the initial five years.  

 

To test these predictions, we first compare publications by the narrow wins within 5 years after 

the grant approval with those published in the next 5 years (year 6--10). Papers published within 

the first 5 years were more likely to be the product of grant ideas, whereas later papers were more 

likely to be related to new ideas developed beyond the initial grant. After comparing their 

performance across these two periods, we found an at most modest and not statistically significant 

improvement for narrow wins in terms of probability to publish hit papers (𝜒'-test,  p-value = 0.14, 

Supplementary Figure 22A), or normalized citations (t-test, p-value = 0.13, Supplementary Figure 

22B). Furthermore, there is no significant difference between publications from 1 to 5 years and 6 
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to 10 years for near misses, indicating their performance on these dimensions are stable (and 

consistent with results reported in Figure 2 of the manuscript). Finally, there is still a significant 

difference between narrow wins and near misses between year 6 to 10.  

 

Together, these results are consistent with those reported in the paper, but run counter to the 

hypothesis that narrow wins were temporarily “locked in” to bad ideas whereas near misses were 

set free. Note that, there could be path dependencies that may potentially explain the long-run 

differences observed in Supplementary Figure 22, but nevertheless, these analyses are also 

consistent with other mechanisms tested in the original manuscript. For example, we did not find 

any significant change in impact associated with shifting future research directions (see 

“Combining hypotheses A-D” in Supplementary Note 4). Together these results suggest that being 

initially trapped by the grant topic is unlikely to drive the performance gap. 

 

Comparing narrow wins and near misses using the percentile score 
	
NIH uses percentile score of proposals in each NIH institute to determine the funding outcome. A 

percentile score of an application is calculated by comparing all applications by the same study 

section at its last three meetings1, which could take place in different years. Prior studies11 used 

the priority score instead of the percentile score to infer the cutoff, which is what we did in the 

main text. But, to ensure that the results still hold, here we repeated our analyses by using the 

percentile to define the cutoff in each NIH study section. Specifically, for each study section in 

each fiscal year, we define the cutoff score as the third worst percentile score of funded grant 

applications in each study section so that there are only two out-of-order funding applications 

beyond the cutoff. Because percentile score has a narrower range than prior score, we focus on 

applications around the cutoff (from -2 to 2). By comparing the near misses with narrow wins, we 

find near misses consistently show higher performance in the longer run (Supplementary Figure 

26).  

 

Supplementary Note 4: Potential generative processes 
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While the broad idea of a failure-driven boost may take many forms, several such mechanisms 

may be detectable from data in our context. There are several plausible hypotheses for such 

processes as we mentioned in the main text. Here, we demonstrate how we test these hypotheses.  

 
Hypothesis A: Novelty 
 
Did early-career setbacks prompt near misses to attempt more novel research, whereas narrow 

wins are bound to their original ideas? Existing studies have shown that high-novelty research 

tends to attract more citations in the long-run53, especially when a small degree of highly novel 

combinations of prior knowledge are balanced with otherwise highly conventional combinations 

of prior knowledge54. To test this hypothesis, we analyzed: 1) whether near misses are more likely 

to publish high-novelty papers in the ten-year window following treatment compared to narrow 

wins; 2) whether near misses shift toward publishing high-novelty papers compared to their own 

publications prior to treatment, relative to any such shift among narrow wins. By calculating paper 

novelty and conventionality based on its combinations of prior work54, we conducted a 2SLS 

regression with the dependent variable being the probability of publishing a high-novelty paper.  

In a separate regression, we study the tendency to produce high-conventionality papers in the next 

ten-year window. We find there is little evidence that the early-career setback may have any effect 

(Supplementary Figure 28, p-value = 0.291 for novelty; p-value = 0.51 for conventionality). 

Further, we tested if there is any effect of early-career setbacks on publishing articles that include 

the highly novel and highly conventional combinations of prior work that have been shown 

elsewhere to predict high impact, finding again insignificant results (p-value = 0.67).  

 

Finally, we introduce a standard difference-in-difference (DID) specification, measuring the shift 

of near misses toward publishing novel papers, compared to what the near misses used to do and 

relative to narrow wins. More specifically, we run a regression with interaction terms to capture 

any differential shift among near misses: 

 

𝑃 ℎ𝑖𝑔ℎ	𝑛𝑜𝑣𝑒𝑙𝑡𝑦	𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝛼	𝑛𝑒𝑎𝑟_𝑚𝑖𝑠𝑠 + 𝛽𝑇JKLM + 𝛾	𝑛𝑒𝑎𝑟_𝑚𝑖𝑠𝑠 ∗ 𝑇JKLM + 𝜖,    (1) 

 

where 𝑛𝑒𝑎𝑟_𝑚𝑖𝑠𝑠 = 1  if the PI is a near miss, 0 otherwise; 𝑇JKLM = 1  if after treatment, 0 

otherwise. We find, comparing with narrow wins, near misses were no more likely to publish high-
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novelty papers relative to their prior publications (coeff. = 0.02, standard error = 0.017, p-value = 

0.302). We obtained similar results when focusing on the likelihood of publishing highly 

conventional papers or balanced high-novelty/high-conventionality papers (p-value > 0.1 in both 

cases). Overall, the effect of the early-career setback does not seem attribute to the hypothesis that 

near misses published more novel papers.  

	
Hypothesis B: Collaboration effect 
 

Did early-career setbacks lead junior scientists to seek out advantageous collaborations? Previous 

studies have shown that teams are often responsible for producing high-impact work55,56, 

suggesting that a collaboration effect may be a plausible explanation for the performance gap. 

Having missed out on funding, the near misses may resort to collaborations with other authors; 

hence the increase in hit papers we observed may potentially reflect work performed with 

distinguished colleagues. To test this hypothesis, we first repeated our analyses by focusing only 

on lead-author publications for the two groups. Here we follow existing studies57 and define lead-

author publications as the first-author or last-author publications. We find that, by focusing on 

lead-author papers only, our conclusions remain the same (Supplementary Figure 13a-d). We 

further employed the conservative removal procedure, finding significant differences between the 

near misses and narrow wins (Supplementary Figure 13ef). Moreover, to rule out the possibility 

that near misses have to work in the lab of established colleagues’ after missing the funding, we 

also focused on last-author publications only57, uncovering the same results (Supplementary 

Figure 27).  

 

We also tested whether there exists any effect of near miss on team size, the number of different 

affiliations, as well as the probability to publish first-author/middle-author/last-author articles in 

the next 10 years after treatment, finding insignificant results for all cases (Supplementary Figure 

28, p-value > 0.1). Finally, we tested if near misses teamed up with higher-impact collaborators 

by calculating the highest h-index among collaborators for each publication. We find no support 

for the hypothesis that near misses worked with higher impact collaborators in the 10 years after 

treatment (Supplementary Figure 28, p-value > 0.1). Together, these results indicate that the 

observed effect is unlikely to be attributable to collaborations.  
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Hypothesis C: Research direction shifts 
 
Near misses may shift their research directions while narrow wins continue in the direction that 

they initially proposed. Were near misses more likely to change their research focus to a different 

field, or perhaps a hot one that tends to garner higher impact? To test whether there is any research 

direction shift for near misses within 10 years after treatment, we estimated the effect of early-

career setbacks on research directions. To quantify the research direction of a certain publication, 

we measured keywords overlap between each article published after “treatment” and the set of 

articles published ex ante. Here, we consider MeSH Headings from the PubMed dataset as 

keywords, and measure their similarities using the Jaccard index. Comparing publications before 

and after the treatment, we find little evidence that early-career setbacks affected the research 

direction, which is consistent with prior studies33 (p-value > 0.7, Supplementary Figure 28).  

 

To test if the near misses may be more likely to publish on hot topics, we estimated the effect of 

early-career setbacks on the probability to publish an article on hot topics. We quantify hot-topic 

papers as papers with the most frequently occurring MeSH terms (top 5%) across all papers in the 

same year58. If a certain fraction of a paper’s MeSH Headings belong among those that most 

frequently occurred, the paper may be considered as a hot-topic paper. We tried several variations 

based on specific fractions and ran a 2SLS regression for each case, where the dependent variable 

is the probability of publishing a paper on such hot topics.  

 

First, we define a hot-topic paper as a paper where at least one of its MeSH terms belongs to the 

most frequently occurring MeSH terms. Under this definition, we find no significant effect of 

early-career setbacks on the likelihood to publish hot-topic papers in the future (coeff.=-0.0009,  

p-value=0.37).  Second, we define a hot-topic paper as one where the vast majority (over 90%) of 

its MeSH terms all belong to the most frequently occurring MeSH terms. We find again no 

significant effect (coeff.=2%, p-value=0.12, Supplementary Figure 28). We did observe some 

suggestive evidence when we define a hot-topic paper as half of its MeSH terms (50%) belonging 

to the most frequently occurring category (coeff.=4.2%, p-value=0.067), but the effect weakened 

following the conservative removal procedure (coeff.=3.9%, p-value=0.101). Note that, near 

misses and narrow wins have the same probability to publish papers with hot topics ex-ante (p-

value > 0.1). Finally, we repeated the 2SLS regression on publishing hit papers when controlling 
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for hot topic papers, finding that, irrespective to the varied definitions, the result remains 

significant (p-value = 0.018 for the conservative removal), indicating that changing research 

direction alone cannot account for the main effect. 

 
Hypothesis D: Changing institutions 
 
Near misses may change research institutions with increased frequency following early-career 

setbacks, and such moves might expose these scientists to new sets of ideas or new collaborators. 

To test this hypothesis, we trace the physical mobility of each PI through their affiliations recorded 

in R01 applications, and calculate the probability of changing institutions in the ten-year time 

window. We find that near misses had a 40% chance to change their initial institution, whereas 

narrow wins had a 42% chance to move in the next ten-year window (p-value = 0.515). 2SLS 

regression yielded similar results (p-value = 0.235), suggesting that physical movements are 

unlikely to be the source of the observed performance gap.  

 

Combining hypotheses A - D 
 
To test if there is combining all above hypothesis explain our main findings, we controlled all 

mentioned processes and ran a 2SLS regression, as follows: 

 

1st stage: 𝐹R = 	𝛼" +	𝛼S𝑠R + 𝛼'𝑠R' + ⋯+ 𝛼J𝑠R
J + 𝜋V𝑧R + 𝜃𝑋V,J[\ + 𝛿𝑋V,^MM[ +	𝜇M + 𝜂` +	𝜂R,  (2) 

2nd stage: 𝑦VM = 	𝛽" + 𝛽S𝑠R + 𝛽'𝑠R' + ⋯+ 𝛽J𝑠R
J + 𝜆𝐹R + 𝛾𝑋V,J[\ + 	𝛿′𝑋V,^MM[ +	𝜇Mc 	+ 	𝜂`c 	+ 𝜖V, (3) 

 

where 𝑋V,^MM[  is the above mentioned hypothesis, i.e., novelty, team size, number of different 

affiliations, hot topic, author order, MeSH Heading overlapping with prior publications, etc. 

Controlling all these parameters, we find our main effects remained, suggesting additional 

processes may be at work (coef. = 7.1% p-value = 0.012 for active PIs; coef. = 6.6% p-value = 

0.021 for the conservative removal).  
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Supplementary Figures 
 
 

	

Supplementary Figure 1: NIH funding landscape. (a) R01 success probability as a function of time. (b) number of successful 

(red) and all R01 competing applications (blue) as a function of time.  
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Supplementary Figure 2: Comparing narrow wins and near misses using different name disambiguation methods. The 

comparison of hit rate per paper (a), average citations within 5 years of publication (b), and (c) average number of papers between 

narrow wins and near misses. Here, if two papers from the initial pool are considered from the same author if they cite each other. 

(d - f) The same as (a - c), and two papers from the initial pool are considered from the same author if one of the following 

conditions is fulfilled: they cite each other, or share at least one common reference, or share at least one common coauthor name. 

(g - i) The same as (a - c) but for the name disambiguation method proposed by Caron and van Eck9. When calculating the average 

citations, we use the NIH applications from 1990 to 2000 in order to eliminate the boundary effect. *** p < .001, ** p < .05, * p 

< .1; Error bars represent the standard error of the mean. 
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Supplementary Figure 3: Comparing near misses and narrow wins after removing PIs with common Asian surnames. (a) 

hit rate per paper; (b) average citations within 5 years of publications, here we focus on NIH grant applications from 1990 to 2000; 

(c) number of hit papers per person; (d) number of publications per person. *** p < .001, ** p < .05, * p < .1; Error bars represent 

the standard error of the mean. 
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Supplementary Figure 4: Relationship between funding success probability as a function of score. (a) For all NIH grant 

applications considered in our study, the funding probability as a function of normalized score; (b) For major NIH institutes, which 

includes more than 75% of applications, the funding probability as a function of normalized score. 
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Supplementary Figure 5: Comparing near misses and narrow wins using cutoff as the second worst funded applications in 

each study section. (a) hit rate per paper; (b) average citations within 5 years of publications, here we focus on NIH grant 

applications from 1990 to 2000; (c) number of hit papers per person; (d) number of publications per person. (e - h) The same as a 

- d but using the conservative removal method. *** p < .001, ** p < .05, * p < .1; Error bars represent the standard error of the 

mean. 
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Supplementary Figure 6: An illustration of the fuzzy RD approach. In this figure, above or below the funding cutoff 

is treated as an instrumental variable (IV). The IV framework helps us disentangle unobserved factors by using 

variation created by the IV as an exogenous shock to one endogenous variable to estimate its causal effect on another 

variable. For example, there could be unobserved factors or individual characteristics that might influence both the 

funding and career outcomes (gray box and arrows), but these hidden variables differ smoothly with the score and are 

uncorrelated with the IV (gray arrow with a red cross). Whether or not one’s score is above the threshold (the IV) only 

affects the funding outcome, but is uncorrelated with future career outcomes. Hence if the IV itself predicts future 

career outcomes, it would mean that the pathway indicated by red arrows must operate59,60, allowing us to further 

establish a causal link between early-career near miss and longer-term scientific success. 
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Supplementary Figure 7: The result from the fuzzy RDD estimation. (a) The effect of near miss on the probability to publish 

top 5% hit papers for applicants in the NIH system; (b) the effect of near miss on the average citations within 5 years after 

publication for applications in the NIH system; Here we use data from 1990 to 2000. (c) the effect of near miss on the number of 

top 5% hit papers published for applicants in the NIH system; d - f The same as a - c but for the conservative removal. Here, we 

use three different sample size, i.e., 5-score around the cutoff, 10-score from the cutoff, and 25-score from the cutoff. We add 

exclusive including NIH institution and time fixed effect, and PI prior performance (see Method section of the main text). Error 

bars represents the standard errors, and are clustered at individual level. *** p < .001, ** p < .05, *p < .1. 
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Supplementary Figure 8: Comparing hit papers per capita between near misses (orange) and narrow wins (blue). Hits per 

capita measure the number of hit papers per person. We uncovered the same direction of results as Figure 2 in the main text, albeit 

with a lesser significance level due to a reduced sample size (p-value = 0.107). Error bars represent the standard error of the mean.	
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Supplementary Figure 9: Comparing near misses (orange) with narrow wins (blue) for those who applies for the first R01 

grant at the time of treatment. a - d, The comparison of hit rate per paper, average citations within 5 years after publication (using 

data from 1990 to 2000), hits per capita and number of publications per capita for active PIs; e - h, The same as a - d but for the 

conservative removal.  *** p < .001, ** p < .05, *p < .1; Error bar represents the standard error of the mean. 
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Supplementary Figure 10: The effect of a near miss magnifies when the stake gets higher. a - c, The subsequent performance 

by near misses and narrow wins, measured by the probability of producing a hit paper (a), average citations of papers attained 

within 5 years of publication; here we used data from 1990 to 2000 (b), and hit papers per capita (c). Shaded symbols represent the 

corresponding measurements reported in Fig. 2 of the main text. d - f, The same as a - c but for the conservative removal. Shaded 

symbols represent the corresponding measurements reported in Fig. 3 of the main text. *** p < .001, ** p < .05, *p < .1. Error bar 

represents the standard error of the mean.  
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Supplementary Figure 11: Robustness check for various hit paper thresholds. Comparison between narrow wins and near 

misses using different thresholds to define hit papers. a-d, top 1% highly cited papers in the same field and same year; e-h, top 10% 

highly cited papers; i-l, top 15% highly cited papers. *** p < .001, ** p < .05, *p < .1; Error bar represents the standard error of 

the mean. 
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Supplementary Figure 12: Robustness check for the normalized citations with respect to field and time. Comparing 

normalized citations 𝑐# between narrow wins and near misses for a) active PIs and b) conservative removal. Comparing the relative 

citation ratio (RCR) between narrow wins and near misses for c) active PIs and d) conservative removal. *** p < .001, ** p < .05, 

*p < .1; Error bar represents the standard error of the mean. 
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Supplementary Figure 13:  Robustness check for lead-author publications. a-d, Comparing narrow wins with near misses in 

terms of hit rate per paper, average citations within 5 years after publication (using data from 1990 to 2000), hits per capita, and 

number of publications per person for active PIs; e-h, The same as a-d but we use the conservative removal method to account for 

the screening effect. *** p < .001, ** p < .05, *p < .1; Error bar represents the standard error of the mean. 
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Supplementary Figure 14: Robustness check for different time windows. a-d, The comparison between near misses and narrow 

wins in terms of hit rate per paper, average citations per paper after five years of publication, hits per capita, number of publications 

per person for top 5% paper between 1995 to 2000 for active PIs; e-h, The same as a-d but for the conservative removal. i-l, The 

comparison between near misses and narrow wins in terms of hit rate per paper, average citations per paper after five years of 

publication, hits per capita, number of publications per person for top 5% paper between 1990 to 1995 for active PIs; m-p, The 

same as i-l but for the conservative removal. *** p < .001, ** p < .05, *p < .1; Error bar represents the standard error of the mean. 
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Supplementary Figure 15: Comparing the NSF money between near misses and narrow wins (near misses minus narrow 

wins) for two periods (1-5 years, and 6-10 years) using the Dimensions data. *** p < .001, ** p < .05, *p < .1 and NS for p > .1; 

Error bar represents the standard error of the mean. 
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Supplementary Figure 16: Robustness check for publication lags.	(a) Near misses outperformed narrow wins in terms of the 

probability of producing hit papers in the next 1-3 years, and 4-10 years. (b) The average citations within 5 years of publication. 

To ensure all papers have at least 5 years to collect citations, here we used data from 1990 to 2000 to avoid any boundary effect. 

(c) The average number of publications per person. *** p < .001, ** p < .05, * p < .1; Error bars represent the standard error of the 

mean.  
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Supplementary Figure 17: The results from the fuzzy RD estimation after controlling demographic features and publication 
years. (a) The effect of near miss on the probability to publish top 5% hit papers for applicants in the NIH system; (b) the effect 
of near miss on the average citations within 5 years after publication for applications in the NIH system; Here we use data from 
1990 to 2000. (c) The effect of near miss on the number of hit papers for applicants in the NIH system. Here we only control 
demographic features. (d - f) The same as a - c but for the conservative removal. Here, we use three different sample size, i.e., 5-
score around the cutoff, 10-score from the cutoff, and 25-score from the cutoff. Error bars represent the standard errors, and are 
clustered at individual PI level. *** p < .001, ** p < .05, *p < .1.  
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Supplementary Figure 18: Robustness checks using MeSH terms to define fields. (a) Near misses outperformed narrow wins 

in terms of the probability of producing hit papers in the next 1-5 years, 6-10 years, and 1-10 years. (b) Average number of hit 

papers. The near-miss applicants again outperformed their narrow-win counterparts. (c) Average number of publications. *** p 

< .001, ** p < .05, * p < .1; Error bars represent the standard error of the mean. 
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Supplementary Figure 19: Comparing near misses (orange) with narrow wins (blue) conditional on securing another 

successful grant within 5 years of treatment.	(a) Near misses outperformed narrow wins in terms of the probability of producing 

hit papers in the next 1-5 years, and 6-10 years. (b) The average number citations within 5 years of publication. To ensure all papers 

have at least 5 years to collect citations, here we used data from 1990 to 2000 to avoid any boundary effect. (c) The average number 

of publications per person. *** p < .001, ** p < .05, * p < .1; Error bars represent the standard error of the mean. 
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Supplementary Figure 20: Comparing near misses (orange) and narrow wins (blue) ex ante using CEM matching. Pre-

treatment feature comparisons between the near-miss and narrow-win group. We compared various demographic and performance 

characteristics. The features are defined as follows (from top to bottom): 1) percentage of female applicants; 2) number of years 

since the first R01 application; 3) number of years since the first publication; 4) number of previous R01 applications; 5) number 

of publications prior to treatment; 6) number of prior papers that landed within the top 5% of citations within the same field and 

year; 7) probability of publishing a hit paper; 8) average citations papers received within 5 years of publication; and 9) citations 

normalized by field and time. We see no significant difference between the two groups across any of the ten dimensions we 

measured; Error bar represents the 95% confidence interval. 
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Supplementary Figure 21: Comparing near misses (orange) with narrow wins (blue) using the CEM matching.	(a) Near 

misses outperformed narrow wins in terms of the probability of producing hit papers. (b) The average number citations within 5 

years of publication. To ensure all papers have at least 5 years to collect citations, here we used data from 1990 to 2000 to avoid 

any boundary effect. (c) The average number of publications per person. (d - f) The same as a – c but for the conservative removal.  

*** p < .001, ** p < .05, * p < .1; Error bars represent the standard error of the mean. 
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Supplementary Figure 22: Comparing future career outcome between publications within 5 years and from 6 to 10 years 

after the treatment, for both near misses and narrow wins. (a) Comparing hit rate probability, and we find there is no statistical 

significant difference between publications from the first 5 years and those from the second 5 years. (b) The same as a but for the 

average normalized citations per paper. We find there is no significant improvement for narrow wins. *** p < .001, ** p < .05, * p 

< .1; Error bars represent the standard error of the mean. 
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Supplementary Figure 23: Comparing citation uncertainty between near misses and narrow wins. (a) Probability to publish 

low quality papers, with citations lower than average citations of papers published in the sae field and time; Error bar represents 

the standard error of the mean. (b) Coefficient of variance of 𝑐# for both groups. *** p < .001, ** p < .05, *p < .1; Error bars 

represent the standard error of the mean. 
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Supplementary Figure 24: Comparing near misses with clear winners in terms of various measurements, with the basis of 

narrow wins. (a) Comparing features of near misses with clear winners prior to treatment; detailed definitions can be found at Fig. 

1 of the main text. Error bar represents the 95% confidence interval; b-e, comparing hit rate per paper (b), average normalized 

citations (c), number of hit papers per capita (d), number of papers (e); f-i, The same as b-e, but for the conservative removal. *** 

p < .001, ** p < .05, *p < .1; Error bar represents the standard error of the mean. 
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Supplementary Figure 25: Comparing near misses with narrow wins, here the active PI is defined as those who published 

at least one paper during certain time windows. a-d, The comparison between near misses and narrow wins in terms of hit rate 

per paper, average citations within 5 years after publication (using data from 1990 to 2000), hits per capita and papers per capita 

by focusing only on active PIs; e-h, The same as a-d but for conservative removal; Error bar represents the standard error of the 

mean. i-k, fuzzy RDD estimation of active PIs; l-n, fuzzy RD estimation of PIs after the conservative removal. In the regression 

estimation, error bars are standard errors clustered at individual level. *** p < .001, ** p < .05, *p < .1.  
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Supplementary Figure 26: Comparing near misses with narrow wins using cutoff defined by the percentile score. a-d, 

Comparing narrow wins with near misses in terms of hit rate per paper, average citations within 5 years after publication (using 

data from 1990 to 2000), hits per capita, and number of publications per person for active PIs; e-h, The same as a-d but we use the 

conservative removal method to account for the screening effect. *** p < .001, ** p < .05, *p < .1; Error bar represents the standard 

error of the mean. 
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Supplementary Figure 27: Comparing near misses with narrow wins using last-author publications only. a-d, Comparing 

narrow wins with near misses in terms of hit rate per paper, average citations within 5 years after publication (using data from 1990 

to 2000), hits per capita, and number of publications per person for active PIs; e-h, The same as a-d but we use the conservative 

removal method to account for the screening effect. *** p < .001, ** p < .05, *p < .1; Error bar represents the standard error of the 

mean. 
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Supplementary Figure 28:  Possible generative mechanisms of why near misses become better than narrow wins. (a) We 

present 2SLS regression estimates, studying the effect of early-career setbacks on ten possible mechanisms for active PIs: 

publishing high novel papers, team size, number of different affiliations, probability to publish first-author, middle-author, and last 

author publications, maximum coauthor h index of each publication, research direction, reference overlapping, and hot topic (we 

define a paper covers a hot topic if a certain fraction of its MeSH terms all belong to the most frequently occurring MeSH terms, 

i.e., 10%, 50%, and 90%.). (b) The same as a but for the conservative removal as conducted in Fig. 3b. *** p < .001, ** p < .05, 

*p < .1; Error bars represent the standard errors, and are clustered at individual level. 
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Supplementary Figure 29: Pre-treatment comparisons between the narrow-win and near-miss applicants in order to access 

the degree of the screening mechanism. (a) Pre-treatment feature comparisons between the near-miss (orange) and narrow-win 

(blue) group who are active in the next 10 years after treatment. We compared 10 different demographic and performance 

characteristics. The features are defined as follows (from top to bottom): 1) percentage of female applicants; 2) number of years 

since the first R01 application; 3) number of years since the first publication; 4) number of previous R01 applications; 5) number 

of publications prior to treatment; 6) number of prior papers that landed within the top 5% of citations within the same field and 

year; 7) probability of publishing a hit paper; 8) average citations papers received within 5 years of publication; 9) citations 

normalized by field and time11; and 10) average team size across prior papers. We see no significant difference between the two 

groups across any of the ten dimensions we measured. (b) The same as a but we compare active (blue) and inactive near misses 

(orange). (c) The same as a but the comparison between active (blue) and inactive narrow wins (orange). Error bar represents the 

95% confidence interval. *** p < .001, ** p < .05, * p < .1. 
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Supplementary Figure 30: Alternative ways to define less able PIs. Comparing narrow wins with near misses in terms of (a) 

hit rate per paper, (b) average citations within 5 years after publication (using data from 1990 to 2000), (c) hits per capita, and (d) 

number of publications per person. *** p < .001, ** p < .05, *p < .1; Error bar represents the standard error of the mean. 
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Supplementary Figure 31: The results from the fuzzy RDD estimation by adding publication time and PI past score fixed 

effects. (a) The effect of near miss on the probability to publish top 5% hit papers for applicants in the NIH system by adding 

publication time fixed effects as an additional control; (b) the effect of near miss on the average citations within 5 years after 

publication for applications in the NIH system by adding publication time fixed effects as an additional control; Here we use data 

from 1990 to 2000. (c - d) The same as a – b but with PI past score fixed effects; (e - h) The same as a – d but for the conservative 

removal. Here, we use three different sample size, i.e., 5-score around the cutoff, 10-score from the cutoff, and 25-score from the 

cutoff. Error bars represent the standard errors, and are clustered at individual PI level. *** p < .001, ** p < .05, *p < .1. 
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